If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8r^2-16r=10
We move all terms to the left:
8r^2-16r-(10)=0
a = 8; b = -16; c = -10;
Δ = b2-4ac
Δ = -162-4·8·(-10)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-24}{2*8}=\frac{-8}{16} =-1/2 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+24}{2*8}=\frac{40}{16} =2+1/2 $
| (2a+5)=(3a-10) | | -6y-y=-2y-20 | | 2n^2-6n-5=0 | | 8r^2-16r+10=0 | | 5x+10+26x+2+65=130 | | 5x+10+26x+2+130=360 | | 5x+10+26x+2=130 | | 5x+10+26+2=130 | | (6x+5)=(15+1x) | | 183=x+0.08x | | (6x-5)=(15x+1x) | | 28=-6v-12v+2v | | 6x-43=41-x | | (20x-4)=(12x+4) | | 12s-42=5s | | 27x-2+77.5+155=360 | | 27x-2+77.5=180 | | 27x-2+155=360 | | 27x-2+133=180 | | 4x+28+12=0 | | 27x-2+155=180 | | 27x-2=155 | | 1/2x+6=1/4(2x-24) | | 31x+3+96=360 | | 2x/15=6/5 | | 31x+3+96=180 | | 16x+3+35=70 | | x^2-78x-160=0 | | -1/4(x-4)=3 | | -5=3-1/5y | | 1/2x^2-3x=-7 | | 7x-12=-2+15 |